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Abstract. Transmission of acoustic waves in two-dimensional binary solid/solid composite
media composed of arrays of Duralumin cylindrical inclusions embedded in an epoxy resin
matrix is studied. The experimental transmission spectrum and theoretical band structure of two
periodic arrays of cylinders organized on a square lattice and on a centred rectangular network
are reported. Absolute gaps extending throughout the first two-dimensional Brillouin zone are
predicted. The measured transmission is observed to drop to noise level throughout frequency
intervals in reasonable agreement with the calculated forbidden frequency bands.

1. Introduction

During the last few years, further to Yablonovitch’s structural proposal [1], the propagation
of electromagnetic waves in artificial periodic structures of dielectric materials, known
as ‘photonic crystals’, has received a great deal of attention. Of particular interest is
the existence of forbidden frequency bands in which electromagnetic modes, spontaneous
emission and zero-point fluctuations are all absent [2].

This search for band gaps in ‘photonic crystals’ and the mathematical analogy between
electromagnetic waves and vibrations has spurred a ‘renewed interest’ in the propagation
of elastic waves in the so-called ‘phononic crystals’. The propagation of elastic waves in
periodic or random composite materials is an old topic in condensed matter physics and/or
acoustics [3, 4]. The present research activities focus on the design of band gaps in the
acoustic spectrum of composite media. Acoustic gaps being frequency domains in which
propagation of sound and phonons are forbidden, one can imagine for these phononic crystals
numerous engineering applications such as frequency filters, vibrationless environments for
high-precision mechanical systems or the design of new transducers. Recent theoretical
results have shown the existence of gaps in the acoustic band structures of 3D and 2D
phononic crystals of various compositions. More precisely large acoustic gaps were obtained
for cubic lattices of elastic spherical inclusions surrounded by a host matrix, the constituent
materials being either both solids [5, 6] or both fluids [7, 8]. 2D phononic crystals composed
of solid (or fluid) cylindrical inclusions periodically placed in an elastic solid (or fluid)
background may also present large acoustic gaps, this for inclusions situated on square
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[6, 9–12], triangular [6, 13–15] or boron-nitride-like lattices [16]. Most of these recent
studies identified absolute band gaps in the vibration spectrum of the composites, that is,
gaps extending throughout the Brillouin zone irrespective of the direction of propagation.
For two-dimensional composite materials, these absolute band gaps were obtained with the
Bloch wave vector perpendicular to the cylindrical inclusions. In 2D and 3D composites,
the contrast in elastic properties and densities between the constituents, and the composition
of the inhomogeneous artificial material, are emerging as critical parameters in determining
not only the existence of acoustic gaps but also their width.

On the other hand, experimental studies of the propagation of elastic waves have been
done by several authors. Acoustic properties of fibrous materials composed of W wires
embedded in an Al matrix [17] and of particulate (e.g. 3D) glass/epoxy or steel/PMMA
composites [18] were investigated. In these studies, jumps in the wave phase velocity
measured as a function of frequency were assigned to stop-bands in the dispersion curve
of the inhomogeneous material. In both studies, the volume fraction of inclusions was
lower than 25% and, in the light of recent results on 2D and 3D composite systems
[5, 6, 9–12], one may think that these stop-bands are local gaps and do not extend over
the whole Brillouin zone. Martinez-Salaet al [19] have experimentally determined the
sound attenuation spectrum in a sculpture made of a 2D array of hollow stainless steel
cylinders in air. These authors ascribed the existence of a peak in this spectrum to the
formation of a phononic gap in this sculpture. One can notice that Sigalas and Economou
[20] and Kushwaha [21] have shown that this sculpture exhibits only pseudogaps, not
absolute gaps. In [20] and [21], the authors have assumed the steel inclusions as infinitely
rigid. Under this restrictive hypothesis, the array of steel cylinders in air can be treated
as a fluid/fluid composite. This assumption is not valid for common binary solid/fluid
composites and reliable theoretical model for the propagation of acoustic waves in this kind
of composite material is not yet available. In a previous paper [22], we have shown the
existence of strong acoustic absorptions in the P-wave experimental transmission spectrum
of a 2D composite medium. This composite was constituted of parallel Duralumin (Al 95%–
Cu 4%–Mg 1% alloy) cylinders arranged periodically on a square lattice and embedded in
a polyvinyl chloride (PVC) matrix, the volume fraction of inclusions being 12.6%. These
absorptions were assigned to local gaps in the theoretically calculated elastic band structure.
More recently, Montero de Espinosaet al [23] have experimentally observed a full band gap
for the longitudinal waves in a 2D fluid/solid composite material. This sample is constituted
of mercury cylinders arranged on a square array and embedded in an aluminum matrix with
a filling fraction of 40%. Unfortunately the theoretical prediction of this full band gap is
lacking in this paper.

Although there is strong evidence supporting the fact that composite materials may
exhibit stop bands in their acoustic spectrum, the design of composite acoustic systems
with tailored gaps requires the development of reliable models with predictive capability.
This paper presents a comparative study between theoretically predicted gaps within the
well known plane wave method and experimentally measured gaps of finite size samples.

The goals of the present work are twofold. The first one consists of a search and
measurement of absolute acoustic band gaps in 2D solid/solid composite media; in a second
step a theoretical model commonly used in the computation of acoustic band structures
of such composites is validated by direct comparison with measured results. For this,
we have manufactured two composite samples constituted of Duralumin cylinders inserted
in an epoxy resin matrix. The array of inclusions is square in one case and centred
rectangular in the other. The centred rectangular geometry was chosen because of its reduced
symmetry. We have measured experimentally the acoustic wave transmission spectrum of
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both samples. Both samples exhibit sharp drops in transmitted intensity in some frequency
ranges serving as strong evidence for the existence of absolute band gaps in 2D composite
media. Comparison of the experimental results with the calculated band structures of these
same periodic 2D systems shows good qualitative agreement. In addition, reasonable
agreement between the interval of frequencies over which transmission is minimal and
theoretically predicted absolute band gaps is achieved. However, there exist some points of
disaccord in the comparison between the calculated and the experimental gaps which are, in
particular, imputed to the finite nature of our samples, especially for the centred rectangular
array.

This paper is organized as follows. In section 2, we present the samples, their preparation
process and the experimental setup as well as the experimental results for their acoustic
transmission spectra. The theoretical method for the calculation of the acoustic band
structures of 2D binary solid/solid composite media is summarized in section 3 followed by
the numerical results for the calculated band structures. The experimental and theoretical
results are then compared and discussed in section 4. Some conclusions concerning the
agreements and points of contention between experiments and theory are also drawn in that
section along with some future perspectives.

2. Experimental method

2.1. Composite systems

The two samples of binary composite materials are constituted of arrays of 25 and 23 parallel
cylinders of Duralumin arranged on a square and a centred rectangular lattices, respectively.
The cylinders are embedded in an epoxy resin matrix. The choice of these usual materials
is based on the strong contrast in their elastic constants and densities [5–16]. These data
are listed in table 1. The metallic cylinders have a diameterd = 16 mm. The periodicity
of the square lattice isa = 20 mm. The centred rectangular lattice has periodicities of
a = 20 mm andb = 2a = 40 mm. The filling fraction of metal to resin, defined as the ratio
between the cross-sectional area of one rod and the surface of one unit cell, is given in both
cases byf = πd2/4a2 and is equal to 0.503. The physical dimensions of the samples are
10 cm× 10 cm× 10 cm. We have illustrated in figures 1(a) and 1(b) the two-dimensional
cross sections of these specimens.

Table 1. The densities and elastic constants of Duralumin and epoxy resin [24].Cl andCt
represent the longitudinal and the transverse velocities of sound, respectively.

ρ Cl Ct C11 = ρC2
l C44 = ρC2

t

(g cm−3) (m s−1) (m s−1) (1010 N m−2) (1010 N m−2)

Duralumin 2.799 6342 3095 11.26 2.681
Epoxy 1.142 2569 1139 0.754 0.148

2.2. Sample preparation

Two cubic moulds, 10.5 cm× 10.5 cm× 10.5 cm, were fabricated by assembling five
square Duralumin plates. 16 mm diameter× 2 mm deep bores, arranged on square (or
centred rectangular) arrays, were drilled on two opposite sides of the mould to maintain
the metal cylinders. Clean Duralumin cylinders were then placed and fixed between these
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Figure 1. Two-dimensional cross section of the square (a) and centred rectangular (b) arrays
of Duralumin cylinders embedded in an epoxy matrix. The probed faces of the specimen are
labelled (1) and (2). The cylinders are parallel to thex3 axis of the Cartesian coordinate system
(Ox2x2x3).

two plates. The liquid epoxy resin [24] was poured in the mould and degassed during a
long period of time to insure that most of the trapped air was evacuated. After hardening,
the composite material was removed from the mould and the faces of the specimen were
pumiced and polished in order to obtain surfaces as smooth as possible.

2.3. Experimental setup

The ultrasonic emission source used in the experiment is a Panametrics delta broad-band
500 kHz P-transducer with pulser/receiver model 500PR. The measurement of the signals is
performed with a Tektronix TDS 540 oscilloscope equipped with a TD100 Data Manager.
The transducers are cylindrical with a diameter of 3.175 cm (1.25 inch). The transducers
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are centred on the faces of the composite specimen and the nearly parallel signal is
perpendicular to the Duralumin cylinders. Emission source produces compression waves
(P-waves) and the receiving transducer detects only the longitudinal component of the
transmitted wave. The measured transmitted signal is Fourier transformed to produce a
power spectrum. Measurements have been performed on the faces (1) and (2) of the two
periodic composite media as illustrated in figure 1. Because of the fact that the size of the
transducer diameter is only approximately 50% larger than the periodicity,a, of the arrays
of cylinders, measurements were conducted at several positions on the faces of the sample
and were averaged to produce a compounded transmission spectrum.

The compounded power spectrum for the square array probed on face (1) is reported in
figure 2(a). This compounded spectrum is the average of two spectra. These two spectra
were obtained by centring the transducer on a row of cylinders or between two rows of
cylinders, respectively. In light of the symmetry of the square lattice, we have verified that
identical measurements are obtained perpendicular to face (2) of this sample. The spectra for
faces (1) and (2) of the centred rectangular composite are presented in figures 2(b) and 2(c),
respectively. The transmission spectrum of figure 2(b) is an average of a measurement
along a row of two cylinders and a measurement along a row of three cylinders. The
compounded spectrum of figure 2(c) is again the average of two spectra generated by placing
the transducer along the central row of cylinders and between adjacent rows of cylinders.
The transmitted spectra have been measured under the same experimental conditions, in
particular the same gain, such that a comparison between the transmitted intensities can
be made. The transmission spectrum of the square array exhibits a well defined drop in
intensity between 50 and 130 kHz. This region of the spectrum is composed of an interval
of frequencies 55–85 kHz where only noise level intensity is measured, followed by some
transmitted intensity between 85 and 115 kHz. Between 115 and 125 kHz, the material
does not transmit significantly. Again in this region the transmitted intensity is within the
noise level of the equipment. A sharp rise in transmission occurs after 125 kHz. The
two regions with noise level intensity are transmission gaps. Because of its geometry,
the sample with a CR array of cylinders is strongly anisotropic. The transmission spectra
measured perpendicular to faces (1) and (2) clearly reflect this anisotropy. One observes in
figures 2(b) and 2(c) transmission peaks of lower height than in figure 2(a). This indicates
a larger attenuation than in the case of the sample with a square array. The identification
of a transmission gap for this sample is then more difficult. However, in spectrum 2(b) the
transmitted intensity drops significantly in the interval of frequency 50–130 kHz and only
noise level intensity is measured between 55 and 85 kHz. The attenuation of the ultrasonic
signal is much more important perpendicularly to face (2) of the sample. In spectrum 2(c),
low transmission is observed in the interval of frequency 50–100 kHz. From figures 2(b)
and 2(c) the noise level frequency intervals intersect in the range of frequency 55–85 kHz
which can then be identified as one stop-band for this sample.

3. Theoretical results

3.1. Model and method of calculation

We calculate elastic band structures for solid/solid periodic 2D binary composite systems
using a method developed by Kushwahaet al [10–12]. These periodic systems are modelled
as arrays of infinite cylinders of circular cross section made of isotropic materials, A,
embedded in an isotropic matrix B. Matrix and inclusions are described within the context
of linear elasticity. The elastic cylinders, of diameterd, are assumed to be parallel to thex3
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Figure 2. Transmission power spectrum measured perpendicular to (a) the face (1) for the
square array, (b) the face (1) for the centred rectangular array and (c) the face (2) for the centred
rectangular array.

axis of the Cartesian coordinate system(Ox1x2x3) (e1, e2, e3 are unit vectors along thex1,
x2, x3 axes, respectively). The array is then considered infinite in the three directionsx1,
x2 andx3. The intersections of the cylinder axes with the(x1Ox2) transverse plane form a
two-dimensional periodic array of specific geometry. In this work, we consider two kinds of
infinite periodic array, namely a square lattice and a centred rectangular lattice with lattice
parameters identical to those of figure 1. We investigate the propagation of elastic waves
in the (x1Ox2) transverse plane, that is we consider a Bloch wave vector perpendicular to
the cylinders.
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In the(Ox1x2x3) Cartesian coordinate system, the primitive lattice vectors for the square
and centred rectangular structures can be written respectively as{

a1 = (a, 0)

a2 = (0, a)
(1a)

a1 =
(
a

2
, a

)
a2 =

(
− a

2
, a

)
.

(1b)

The origin O is chosen on one site of the array.
The primitive vectors of the reciprocal lattices for the square (S) and the centred

rectangular (CR) arrays are respectively given by
b1 = 2π

a
(1, 0)

b2 = 2π

a
(0, 1)

(2a)


b1 = 2π

a

(
1,

1

2

)
b2 = 2π

a

(
− 1,

1

2

)
.

(2b)

The two-dimensional reciprocal lattice vectorsG for the square array are

G = h1b1+ h2b2 = 2π

a
[h1e1+ h2e2]. (3a)

In the case of the centred rectangular lattice, they take the form

G = h1b1+ h2b2 = 2π

a
[(h1− h2)e1+ 1

2(h1+ h2)e2]. (3b)

In relations(3a) and(3b), h1 andh2 are two integers.
The method for the calculation of the band structure is the well known plane wave

method where the densities and the elastic constants of the isotropic constituent materials,
which are position dependent in the composite system, are developed in 2D Fourier series
in the reciprocal space. We summarize here this method for 2D systems. The mass density
and the elastic constants areρA, C11A andC44A inside the cylinders A andρB , C11B and
C44B in the background (i.e. matrix) B. These physical characteristics in the composite
system, denotedζ in a general way, are space dependent with respect to the position vector
r = (x1, x2) in the transverse plane, i.e.ζ(r) = ζA in the cylinder A andζ(r) = ζB in the
matrix B.

In the 2D binary composite material, in the absence of external force, the equations of
motions are

ρ(r)
∂2ui

∂t2
=∇ · [C44(r)∇ui ] +∇

[
C44(r)

∂u

∂xi

]
+ ∂

∂xi
[(C11(r)− 2C44(r))∇ · u] (4)

where u(r, t) is the position and harmonic time dependent displacement vector of
componentsui (i = 1, 2, 3) in the Cartesian coordinate system(Ox1x2x3). If we limit
the wave propagation to the(x1Ox2) transverse plane, one can introduce a 2D wave vector
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K(K1,K2) (which meansK3 = 0) and the harmonic displacement vectoru is independent
of thex3 coordinate. Then, equation (4) can be separated into the following two equations:

ρ(r)
∂2ui

∂t2
=∇T · [C44(r)∇T ui ] +∇T ·

[
C44(r)

∂uT

∂xi

]
+ ∂

∂xi
[C11(r)− 2C44(r))∇T · uT ] (5)

(i = 1 or 2) withuT = u1e1+ u2e2 and∇T = e1∂/∂x1+ e2∂/∂x2 and

ρ(r)
∂2u3

∂t2
=∇ · [C44(r)∇u3]. (6)

Equation (6) corresponds to pure transverse modes of vibrations(u3e3 ⊥ K) called
Z modes. Equation (5) describes modes of vibrations for whichuT andK are coplanar
vectors and are denoted asXY modes [10].

In our calculations of elastic band structure of 2D binary composite systems,
equations (5) and (6) form the basic equations describing the propagation of acoustic waves.
Taking advantage of the 2D periodicity in the(x1Ox2) plane, the quantitiesρ(r), C11(r),
C44(r) for composite inhomogeneous media are developed in Fourier series in the form

ζ(r) =
∑
G

ζ(G) eiG·r. (7)

The Fourier coefficients in equation (7) are given as

ζ(G) = ζBδG0+ (ζA − ζB)F (G) (8)

where δ is the Kronecker symbol. In equation (8),F(G) stands for the structure factor
[10–12] of the cylinder A defined asF(G) = 2f J1(GR)/GR whereJ1(x) is the Bessel
function of the first kind of order one.

After some algebra, equations (5) and (6) become standard eigenvalue equations for
which the size of the involved matrices depends on the number ofG vectors taken into
account in the truncated Fourier series.

3.2. Numerical results for the square and centred rectangular lattices

In this sub-section, we present band structures calculated for infinite periodic square (S)
and centred rectangular (CR) lattices of Duralumin cylinders in an epoxy matrix. We focus
onXY modes of vibration and we solve the Fourier transform of equation (5) numerically.
In these calculations, 441 and 453 shortestG vectors are taken into account for the S and
CR systems, respectively. These numbers ofG vectors ensure sufficient convergence of
the calculated eigenvalues and offer a good compromise between accuracy and computing
time. The elastic parameters used in these calculations are those given in section 2.1.

Figures 3 and 4 show theXY mode band structure for the infinite S and CR arrays
of Duralumin cylinders in epoxy resin. These dispersion curves have been plotted in the
principal symmetry directions of the Brillouin zone (see insets in figures 3 and 4). The
plots are given in terms of the frequencyν in kHz versus the reduced Bloch wave vector
k =Ka/2π for ν in the range 0< ν < 200 kHz. These two figures are quite similar. For
the square array, a large gap opens up approximately between the maximum of the third
band (point X) and the minimum of the fourth band located on the middle of segment0M.
This gap extends fromν = 57 kHz to ν = 88 kHz. For the centred rectangular array, a
gap appears between the maximum (ν = 59 kHz) of the third band located on the middle
of segment XJ and the minimum of the fourth band at point0 (ν = 87 kHz). The width
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Figure 3. Band structure for the two-dimensionalXY modes of vibration in the periodic square
array of Duralumin cylinders in an epoxy resin matrix forf = 0.503. The inset shows the
irreducible Brillouin zone. The reduced wave vector is defined asKa/2π whereK is a two-
dimensional wave vector. The points0, X and M in the 2D Brillouin zone have reduced
components(0, 0), (1/2, 0) and (1/2, 1/2). Absolute band gaps are represented as hatched
areas.

of the first gap for both arrays extend over nearly the same frequencies. We note that
the centred rectangular array is similar to a distorted triangular lattice [13, 16]. With the
same filling fraction(f ≈ 50%), the computedXY band structure of an infinite triangular
array of Dural cylinders in epoxy presents a large gap of similar width. In figures 3 and 4,
there exists also a narrow gap around approximatelyν = 110 kHz. In both cases, we have
also calculated the densities of states of theXY modes, scanning the surface of the two-
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Figure 4. The same as in figure 3 for the periodic centred rectangular array of Duralumin
cylinders in epoxy. The points0, X, J and M in the 2D Brillouin zone have reduced components
(0, 0), (5/8, 0), (3/8, 1/2) and(0, 1/2).

dimensional Brillouin zone on a large number ofk points. This computation confirms that
the existing gaps extend throughout the Brillouin zone and are not only on its periphery.
One therefore concludes that these gaps are absolute for theXY modes of vibration. The
theoretical model predicts that acoustic waves of this polarization cannot propagate in this
domain of frequency.
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4. Discussion and conclusions

To summarize the experimental findings, the measurement of transmission spectra resulted
in the observation of two gaps extending from 55 to 85 kHz and 115–125 kHz in the case of
the finite size sample with a square array of cylinders. The sample with a centred rectangular
array of cylinders seems to exhibit one gap extending from approximately 55 to 85 kHz. In
order to compare, with more precision, the experimental measurements with the theoretical
predictions, we have calculated theXY density of states, in the range 0< ν < 500 kHz,
for wave vectors in the direction0X of the first two-dimensional Brillouin zone of the
square array (see figure 5(a)). This direction corresponds to the direction of the ultrasonic
waves beam used in the experimental measurements on the square array. One observes, in
figure 5(a), that an infinite periodic square lattice exhibits in this direction of propagation,
one large region of null density of states between 58 and 90 kHz. One notes that the first
low transmission region in the experimental spectrum (see figure 2(a)) overlaps with this
theoretical gap. Around 120 kHz, theXY density of states is not strictly equal to zero
but reaches a low value. This domain of frequency may be compared to the second low
transmission region of figure 2(a) and corresponds to a local gap in the band structure. The
geometry of the sample has prevented the experimental measurement of transmission along
the 0M direction. On that basis, our experimental transmission spectra do not constitute
a proof that the observed forbidden bands are absolute in nature but serve only as strong
evidence for the existence of such an absolute gap. One may expect that measurement
along the0M direction should show a region of low transmission in the range 55–85 kHz
to confirm that this domain of frequency is an absolute gap.

Figures 5(b) and 5(c) show theXY density of states in the directions0M and 0X
of the Brillouin zone of the rectangular centred array, respectively. These figures may be
compared to the transmission spectra of figures 2(b) and 2(c). Figure 5(b) exhibits one
large region of null density of states between 55 and 85 kHz which corresponds to the local
gap in the direction0M of figure 4 and coincides with the region of low transmission of
figure 2(b). In the direction0X, the same local gap is observed in figure 5(c) but this gap
appears enlarged on the experimental spectrum of figure 2(c). One should stress that, in
this direction, the transmitted power is strongly attenuated by the sample even for very low
frequencies and it is quite difficult to define precisely the edges of the region with noise level
transmission. Such a problem does not arise in the case of the square array of cylinders or in
the direction0M of the centred rectangular array. This could be imputed to the anisotropy
of the sample with the centred array of cylinders and to its finite size. Compared to face (1)
of the sample the location of scatterers in this direction is very different. Moreover, one
observes in figure 4, that the fourth band which gives the upper limit of the gap, is flat in
the direction0X except in the vicinity of point X. One may think that such a flat band
corresponds to vibration modes which are mainly localized inside or in the vicinity of the
inclusions and do not expand too much inside the matrix. It is possible that this kind of
vibration mode cannot be detected by the experimental apparatus located at the surface of
the sample. This observation could explain the widening of the gap.

On the other hand, for both samples, the predicted absolute gap around 110 kHz is not
clearly observed in the experimental spectra. In this range of frequency, figures 2(a) and 2(b)
exhibit domains of reduced transmission but with intensity larger than the noise level. In
figure 2(c), transmission increases in that latter region. We believe that the narrowness of
the predicted gap may set it outside the capabilities of our equipment. Furthermore, such
a narrow band resulting from the periodicity of the infinite lattice may not be seen in the
case of the finite samples used in the experiment. The differences between calculated and
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Figure 5. Calculated densities ofXY states in (a) the direction0X of the square array, (b) the
direction0M of the centred rectangular array and (c) the direction0X of the centred rectangular
array.

measured spectra may also result from the fact that theXY vibrational modes have been
decoupled from theZ modes in the theoretical calculation which is definitely not the case
in the experimental condition. It appears necessary in order to solve these discrepancies,
especially for arrays of reduced symmetry such as the centred rectangular lattice, to calculate
acoustic transmission spectra for two-dimensional composite materials of finite size. Finally,
some of the differences between the experimental and theoretical spectra may be, also, a
consequence of the dimension of the transducers being on the order of the period of the
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samples. The transducer diameter is approximately 50% larger than the period of the square
lattice and the centred rectangular array in the directionx1. In the directionx2, the period of
the rectangular array exceeds the radius of the transducer by nearly 25% (see figure (1)). In
particular, we anticipate the averaging procedure used to obtained compounded spectra to
be valid for the square and rectangular arrays in the directionx1 as significant beam overlap
is achieved for the two probed positions. Larger uncertainties are therefore anticipated for
the spectra of the centred rectangular array along thex2 direction. This problem may be
solved by using samples with smaller periods. However, this has not been possible because
of the added difficulties in manufacturing such smaller composites.

In conclusion, both experimental measurements and theoretical calculations support
quite clearly and unambiguously the existence of large acoustic band gaps at low frequency
in 2D periodic binary solid/solid composite media. The sample with a square array shows
the existence of one large gap in the transmission spectrum. This gap is in agreement
with the prediction of one large absolute band gap in the theoretical band structure. The
width and the frequency domain of the theoretical gap are comparable to those of the
experimental one. Along one direction of propagation (0M), experimental measurements
and theoretical predictions agree quite well for the rectangular centred array. In light of
the agreements between the observed and calculated gaps, we believe that the theoretical
model presents some predictive capabilities. The differences between the experimental and
numerical results are compelling arguments for the development of numerical methods for
the prediction of transmission spectra of finite composite systems. This will be the subject
of future work.
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